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Large Deviations for Processes with Independent Increments

James Lynch and Jayaram Sethuraman

Abstract

Let X be a topological space and F denote the Borel g-field in X. A
family of probability measures {PX} is said to obey the large
deviation principle (LDP) with rate function I(:) {if PA(A) can be
suitably approximated by exp {-A inf I(x)} for appropriate sets A in F,
Here the LDP is studied for probaﬁ?ﬁity measures induced by stochastic
processes with stationary and independent increments which have no Gaussian
component. It is assumed that the moment generating function of the
increments exists and thus the sample paths of such stochastic processes
lie in the space of functions of bounded variation. The LDP for such
processes is obtained under the weak¥*-topology. This covers a case which
was ruled out in the earlier work of Varadhan (1966). As applications, the

large deviation principle for the Poisson, Gamma and Dirichlet processes

are obtained.
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1. Introduction.

Let X be a topological space and F denote the Borel ¢-fleld in X.
Let {PX} be a family of probability measures on (X,F). The family
{PA} is said to obey the large deviation principle (LDP) (for a
more precise definition see Section 2) with rate funection I(-) if
PA(A) can be approximated by exp {-A inf I(x)} for appropriate

XEA
subsets A in F.

Important examples of the LDP include the cases where PA (y a
positive integer) 1s either (i) the probability measure induced by the
average of i i.i.d. random variables (see Chernoff, 1952; Bahadur and
Zabell, 1979; Varadhan, 1983) or (ii) the probability measure of the
empirical distribution of X i.i.d. random variables (Groeneboom, Qosterhoff
and Ruymgaart, 1979). In an important paper, Ellis (1984) has elegantly
shown how to establish the LDP when X = RK, solely in terms of the moment

generating functions of PA. Further examples may be found in the

resent surveys on large deviations by Azencott (1980) and by Varadhan

. [ ’ f";" -

(1983). / - . . e

The establishment of the +DP has had important implications in
various areas in statistics. It has been used to obtain the asymptotic
efficiencies of tests and estimates (Chernoff, 1952; Bahadur, 1960a,b,
1967 and 1971) and to obtain the asymptotic behavior of functional
integrals associated with solutions of stochastic integrals, (Varadhan, 1966
and 1983). It appears in the evaluation of the 'free' energy in
statistical mechanics {(Lanford, 1973; Ruelle, 1969). It is alsc intimately

related to certain types of laws of large numbers (Shepp, 1964; Erdos and

Rényi, 1970).
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stationary independent increments with no Gaussian component and obtain
complete resultsﬁ The space X that is appropriate here is BV[{0,1], the
space of functions of bounded variation and the topology is that of
weak*-convergence., Varadhan (1966) studied the LDP for similar processes
with possible Gaussian components but satisfying the condition J(a)/{ a |+ =

as|a|* = where J(*) is as defined in (3.2) and is the rate function based

\f on the distribution of the increments. Varadhan (1966) used the space

S&E D[0,1] and the topology of uniform convergence. However, the condition

{-l J(a)4 a] + » ig violated for many processes of interest including the Gamma
.‘ process. We illustrate our LDP results for this process and a related

;i' process called the Dirichlet process.

- The organization of this paper is as follows: Preliminary
o
& definitions and general results on the LDP, which are used in later

sections, are given in Section 2. A rate function on M[0,t], the space of

2D finite measures on [0,1], is defined and several theorems concerning this
:). rate function are proved in Section 3. In Section 4, the LDP is

t;f established for stochastic processes with stationary and positive

'Sé independent increments which are considered as elements of M{0,1]. 1In

;) Section 5, the general LDP results are given for stochastic processes with
%i stationary independent increments and no Gaussian component which are

_;E considered as elements of BV[0,1], the space of functions of bounded

~;;Z variation. The final section, Section 6, is devoted to applications to the J
;ﬁ; Poisson, Gamma and Dirichlet processes.
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2. Definitions and General Results.

Let X be a topological space and F be the Borel og-field in X. Let
{PA} be a family of probability measures on (X,F). The following
definitions which are slight variants of those of Varadhan (1983) allow us

tOo state many large deviation results in concise form.

Definition 2.1. A function I(+) on X is said to be a regular rate function

if
(2.1) 0 <I(x) (=,
Y (2.2) I(*) is lower semi-continuous (lsc), and
-~
321 (2.3) for each ¢ < =», Ty = {x:1(x)<c] is compact.
)
-;'.--
N For any subset A of X, define
(2.4) I(A) = inf I(x).
XeA
Definition 2.2. The measures {PA} satisfy the large deviation
principle (LDP or LD principle) with rate function I(+) if
(2.5) I{+) is a regular rate function,
2.6) for each closed set F,
Tim % log P,(F) < - I(F), and
. (2.7) for each open set G,
. 1
N lim + log PA(G) > - 1(G),
N —_—
': where nere and throughout the remainder of this paper the limits are as
A > @,
n\.~
2N
,. 3
“ N
N
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Definition 2.3. The measures {PA} satisfy the weak large deviation

principle (WLDP or the weak LD principle) with rate function I(-) if (2.5)

and (2.7) of Definition 2.. together with (2.8) below are satisfied:

(2.8) for each compact set K,

TTm ¢ log P, (K) < - I(K).

Definition 2.4. The measures {PA} are large deviation tight (LD

tight) if, for each M > =, there exists a compact set Ky such that

1 c
(2.9) lim T log px(KM ) < = M.

The following lemma shows the usefulness of LD tightness.

Lemma 2.5. Let {PA} be LD tight and satisfy the WLDP. Then it

satisfies the LDP.

Proof. Let C be closed and let £ < I(C). Let M > £ and choose a compact
set Ky to satisfy (2.9). Then CNKy is compact and P, (C) <
P, (CKy) + P, (Ky®).

Thus,
% log P,(C) ¢ = min {1(CMK) M} < - L. o

Many interesting applications in large deviations occur when X is a
Polish space, that is a separable complete metric space. Accordingly, we

will assume that all spaces we consider in the rest of this paper to be

Polish spaces, and the corresponding o-fields to be Borel g¢-fields.
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For sequences of probability measures on a Polish space the

following lemma, which will not be referred to in the remainder of the
paper, shows that the LDP implies LD tightness. Consequently, the LDP is

equivalent to the WLDP and LD tightness along subsequences.

Lemma 2.6. If {PA} is a sequence of probability measures which

satisfies the LDP, then {Px} is LD tight.

Proof. Let {xi,i=1,2,...} be a countable dense set in X. For any § > 0,
let Aj(8) be the open sphere of radius 6 around x;. ThenUAj(1/k) = X for
i
k =1,2,... Fix M > 0 and an integer k. Consider the compact set IsuM =
{x:I(x)<2kM}. There exists a finite open covering
Le

ACK) = U Ag(1/Kk)
i=]

of Tpkm. Thus, from (2.6)
lim A-TP, (A%(K)) < = I(AS(K)) < = I(Iy) < = 2kM.

Since we are considering only sequences {A} we can find a larger finite

Junion

T
B(k) = U Ay(1/k)
i=1

with Jy 2 Iy such that

P,(BS(K)) ¢ e
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for all \. The set K = N B{(k), where B(k) is the closure of B(k), is

k=1

totally bounded and closed, and hence is compact. Furthermore

(2.10) P (K®) < T P, (BC(K)) < M (1-3"

k=l

oM)

for all A, where g is the smallest index in the sequence {A}. This

completes the proof of Lemma (2.6). o

Let {Pxi} be a family of probability measures on a Polish
space X1, 1 = 1,2, Let P, = PA1 X PAZ be the
product measure on the product space X= X? x X2, We will now investigate
whether LD properties of marginal measures carry over to the product

measures.

Lemma 2.7. If {Pki} is LD tight for i = 1,2, then {PA} is

LD tight.
Proof. Obvious.

Lemma 2.8. Let {Pxi} satisfy cthe WLDP with rate function Ii(xj),
i =1,2. Then [Px} satisfies the WLDP with rate function I(xq,x2)

= I1(x1) * I%(x5).

Proof. It is easy to check the regularity of I(xi,x3) from the regularity

of I'(xy) and 12(x2). Let K=X be compact and let £ < I(K). For each
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::'.'-‘_-'. (x1,x2)eK, since I(+) is lse, there are open sets Oix in X1
S i
L containing xj, { = 1,2, such that
L
o
L (2.11) inf {I(y1,y2): (y1,¥2)e 01y x 02, | > L.
oy : 1 2
f\' Furthermore, since X! is Polish, we can find open subsets Ni, of
..'_\._ ] - i
:::E'j’_ Oly such that xgeNly and N1, < ol .
N i i i i
N Consider the open covering U Ny x N2, of K. We
h v‘_‘-' (Xl,xz)EK 1 2
(o can extract a finite subcovering ;| N'y~ x N2,  of K,
-y m=1 1,m 2,m
::-_j--j Let K' and K2 be the projections of X in X! and X2. Then k! and
> Mi, - ﬁix Nkl are compact, m = 1,...,M and { = 1,2.
A i,m 1,m
e Furthermore, K ¢ {j Ml x M2,
m=1 1,m 2,m
Thus, since Mi, is compact and {Pxil satisfies the
e i,m
. WLDP,
\ -
R Tim + log P.(K) < - min (2'(M'_  )e1202. )
. A A - X X
m 1,m 2,m
T <-2
4
__:-'_.:'- in view of (2.11). This proves (2.8).
;-':'_:: Let O be an open set in X, Fix ¢ > 0 and choose (x1,x2) so that
¢ I(xq,x2) < I(0) + &. There exist open sets Oy in X1 around xi,
FoE i
o i = 1,2 such that Oy x Oy < O. Thus
Y L 2
o . 2 1 {
o lim T log PA(O) > £ lim T log PA (Ox )
o —_— =) — i
‘\-:::-:_ 2 - I(x,,x5) 2 = I(0) - e.
N
:-':- Since € > 0 is arbitrary, this establishes (2.7) which completes the proof
L3 '
- of Lemma 2.7. a
o 7
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The following corollary follows from Lemmas 2.5, 2.7 and 2.8.

Corollary 2.9. Let {Pki} be LD tight and satisfy the WLDP, i = 1,2.

Then Px = Px] X sz satisfies the LDP.
Two important and immediate derivatives of the LDP are the
contraction principle, which is used later in this paper, and the
asymptotic expression for certain integrals. These are stated below. For
proofs see Varadhan (1966, 1983).
Let {PA} satisfy the LDP with rate function I(x). Let h be a

continuous map from X into another Polish space Y, and let

- -1

Contraction Principle. The measures {QA} satisfy the LDP with rate

function

(2.12) K(y) = inf I(x).
X:h(x)=y

Asymptotic expression for certain integrals. Let F be a bounded real

valued continucus function on X. Then

{(2.13) % log [ exp(AF(x)) dPA(x) + sup [F(x)-I(x)].
X

It is interesting to note the definition of the LDP and LD tightness
together with their consequences, namely (2.12) and (2.13) above, run

parallel to the definition of weak convergence and tightness (see

Billingsley 1968) together with their consequences, namely the continuous
mapping principle and convergence of integrals of bounded continuous

functions.
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3. The Rate Function I(f) on M[0,1].

Let X be a real valued random variable and let

(3.1) 08) = E(e®) ¢ =

for | 8] < n where n > 0. Let ¢(8) = log ¢(8).

Define

(3.2) J(a) = Jx(a) = sup [at-y(t)].
t

The function J(a) is loosely called the rate function associated with X.
More precisely, let P, be the distribution of (Xj+...+Xn)/n where Xy,

X2, ... are i.i.d. copies of X. The following i{s the oldest theorem in
large deviation theory and is variously referred to as Cramer's theorem and

Chernoff's theorem.

Theorem 3.1. (Cramér,1938; Chernoff, 1952). The distributions {P,} are LD

o

a{i: tight and satisfy the LDP with rate function J(a).

e

Zﬁ}: The following facts concerning the function J(a) are easy to obtain
E:;: from its definition in (3.2):

Bty

?‘:‘ (3.3) 0 < J(a) < =, J(nu) = 0 where E(X) = p and J(a) » = aslals e
yaRs

T (3.4) J(a) = sup [at-y(t)] if a > u.

o €20

N

]

)

s W h
.

.
Q..
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(3.5) J(a) is convex.
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J(a) J(a) ®
C1 and lim rsj— 02 exist, where 0 < C1, CZ< .

(3.6) lim

a-»o ar—oo
(3.7) The function g(b) defined by

bJ(1/b) iIf0<b(=
g(b) =

01 iItb=0

is convex on [0,=).

(3.8) If the support of X is [0,=), then J(0) < = i{f and only if

P(X=0) > 0.

We will now obtain an illustration of the contraction prineciple which
will be used in Section 5 to identify the LD rates. Let X = x(1) - x(2)
where X1 and x(2) are independent non-negative random variables. Under
assumption (3.1), the moment generating functions ¢(i)(e) of X(1) exist in
a neighborhood of 0, 1 = 1,2. Let y{1)(g) = log ¢(1)(9) and define the
rate function J(1)(a) of x{1) analogously to (3.2), i = 1,2. Fron Theorem
3.1 and Corocllary 2.9, the distributions of the arithmetic means of i.i.d.
coples of the bivariate random variable (X(1),x(2)) satisfy the LD
principle with rate function J(1)(xq) + J(2)(x5). From the contraction

principle we obtain the useful result

(3.9) J(a) = inf (3 (as0)+3 @ (v
b
Let
(1) s (a)
(3.10) C = 1lim ——, i =1,2,
a-)w a
10
. . PSSR -, T e S e e e T e RRTIL N e et e R
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We will now show that

(3.11) cy = c(i), 1 =1,2

where Cy Cp are as defined in terms of J(a) in (3.6). Note that
w(8) = y(1)(e) + y(2)(~9) and that ¥(2)(8) < 0 for & < 0 since x(2) is

non-negative. Thus

(3.12) as - v(1)(8) < J(a) ¢ J(M)(arb) + J(2)(b)

for all & > 0 and all b. From (3.4)

J(1)(a) = sup [ae-w(')(e)l

8>0
for large a. Dividing (3.12) by a and allowing a to tend to «, we obtain
c; = c{1), similarly Cy = c(2),

Let M[0,1] be the space of finite measures on ([0,1],B) where B is
the usual Borel o¢-field in [0,1]. For any element f in M[0,1], we define
its distribution function f(t) by letting £(0) = 0, f£(t) = £([0,t]),

0 <t <1. We also use the same symbol £ to denote both the measure f(A)
and the (extended) distribution funetion f(t).

Let a be a probability measure on [0,1], that is a ¢ M[(0,1] and a(1)
=1, Let 0 = tg <t < ... <ty = 1. Both the collection of points
{tgst1s+..,t] and the collection of intervals
{00,t11,(ty,t2],000,(ty-1,1]} will be referred to as the partition P. Let
0(P) be the o-field generated by the intervals in the partition P. The

partitions {P} from a directed set under the partial order P' > P if

11
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a(P') O a(P). We will be taking limits of functions on {P} and it will
always be along directed nets such that o(P) - B.
Let £ ¢ M[0,1] and P be a partition. We define

(

£le)=r(t, )
? J (a(ti)-a(ti-1)) (a(ti)-a(ti_1))
if a(ty) - a(tj-1) = O implies
(3.13) I,(f) -ﬁ £(ty) - £(ty-1) = 0, i=1, ..., Kk,
© ctherwise,
\

wherein J(a) is the rate function of some non-negative random variable X
satisfying (3.1) and we observe the convention 0-(undefined) = 0 and
O.= = 0, The rest of this section is devoted to obtaining many important
properties of Ip(f) which are useful in obtaining the LDP results of
Section 4.

Denote the restriction of the measures a and £ to o(P) by ap and fp.
respectively. We may rewrite the definition in (3.13) by

ar
fJ(d—B) da if fP <& %
(3.14) I(f) = %

® otherwise.

Let £ = £y + f, be the Lebesgue decomposition of f with respect to a,
with £y << a and fp | a. Let L c[0,1] be such that fa(L) = f2([0,11) and

a(L) = 0. Similarly define aj, a2 and M by a = a7 *+ ap, a7 << £, ap | f,
. df1 43 da1 h
= ’ f(M) = 0, Let f1 = —= and a1 = —=. en
az(M) = a2([0,1]) and £(M) =0 1t 17

51 = 1/a; > 0 a.e. on (LUM)C with respect to f and a.

12
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Define

! J(fl) da + C]fz([0,1]) if supp. f < supp. a,
(3.15) I(f) =
® otherwise

where supp. stands for support, Cq depends on J and is as defined in (3.6).

The following theorem relates Ip(f) to I(f).
Theorem 3.2. As o(P) > B,
(3.16) Ip(f) » I(f).

Proof. When supp. f is not contained in supp. a, I(f) = =, In this case
we do not have fp K oap for some Pf Then Ip(f) = » and Ipq(f) = @
for finer partitions P'. This establishes (3.16) in this case.
From now on assume that supp. f € supp. a. It follows that fp <K “p
df
for each P and that {E_E,a(P)} is a martingale. Since J(a) is convex,

dfp Op
{g (da ),o(P)} is a sub~martingale. We also have

df .
(3.17) P, f and J(-—P) + J(L.) a.e. a.
ap 1

%

Under the condition supp. f ¢ supp. a it may not be true that

do
a, << f,. We will use the nocauond_ff to denote the Radon-Nikodym
P
derivative of a*p, the absolutely continuous part of QP with respect to fp.
dap
Then Eﬁ?_'c(P)} is a super-martingale under f and
|4
13
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da da

(3.18) Efi > &, and g(z:D) » g(a,) a.e. f.
p
We also have
dup dfP
(3.19) IP(f) =/ B(F) df + [ J(a——-) da
(¢ |
d P P ]
o df ‘
FraR i R S |
P %p ‘
and
daP
(3.20) Ip(f) > J 8(3;‘) ar
P

with equality in (3.20) when a_ << f_. Similarly, we can write

P 14 ]
(3.21) I(f) = [ gla,) df + f J(?1) da
g, < W £, < u
and |
\
|
|
(3.22) I(f) = [ glaq) df + J(0) ap ([0,1]).
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It is possible that Ky = » or J(0) = » or both and so we consider the

following cases to complete the proof:

(1) I(f) ==
(i1) I(f) < = and £([0,1]) = 0
(111) I(f) < = and a([0,1]) =0
(iv) I(f) < =, £5([0,1]) > 0 and ap([0,1]) > O.

Case (1). In this case from (3.15), fJ(fq)da = = or Cy-£2([0,1]) = = or
both. When IJ(f1)da = ®, (3.?7) and Fatoﬁ's lemma imply that Ip(r) > @,
When cl-rz([o,1]5 = =, we have fg(aq)df = =, From (3.18), (3.20) and
Fatou'é lemma, we once again obtain Ip(r) »> @,

Case (ii). In this case f << a and we can adjoin the limit (f,,s) to the
martingale {;;g,a(P)}. The function J is convex and from (3.15), J(?1) is
a—-integrable, This implies that J(%é%)is uniformly integrable. It
therefore follows that Ip(f) - I(f).

da
Case (iii). In this case a << f and {E?E,U(P)} is a martingale under f to

P
which can be adjoined its limit {&1,3}. The function g is convex and from
: df
(3.22), g(ay) is f-integrable. This implies that ggiig)is uniformly
» P

integrable. Again, it follows that Ip(f) - I(f).

fﬁf Case (iv). In this case J(0) < = and K < =, hence the functions J and g

;yfﬁ are bounded on [0,u] and [O,u'j), respectively. Using the definitions
. (3.19) and (3.21) and the bounded convergence theorem, we have Ip(f) -
R 1(£). a

Remark. In Theorem 3.1 we have actually shown that

15




(3.23) sup Ip(f) = I(f).
P
The next two lemmas establish the fact that I(f) is a regular rate
function with respect to the weak*-topology on M[0,1]. A sequence fn in
M[0,1] converges in the weak¥*-sense to f if fn(t) + f£(t) for each t at
which £ is continuous. Following tradition, we will call the

weak*-topology as the weak topology in the rest of this paper.
Lemma 3.3. The function I(f) is lsc in the weak topology.

Proof. Fix f ¢ M[0,1]. Let f, » £ weakly. We need to show that

(3.24) lim I(f) > I(£).

If the support of f is not contained in the support of a, then I(f) =
= and there exists a weak open neighborhood G of f containing only measures
whose supports are not included in the support of a. Then f, € G for all
large n and thus lim I(f,) = =, which establishes (3.24).

If the support of f is contained in the support of a, choose a
partition P = {O-CO,t1,...,tk-1} consisting of continuity points of f.

Then fn(ty) +» £(ty) fér each i, and thus lim Ip(fn) - IP(f). From (3.23),
Ip(fn) < I(fn). Thus lim I(fn) > Ip(f). By allowing o(P) to tend to

B along such partitions and using Theorem 3.2, we obtain (3.24). a
Lemma 3.4, Let ¢ < =, The set

(3.25) Te = {f: I(f) < e}

16
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is compact.

Proof. Consider the partition P = {0,1}. We have
JE0,1D) = 1(5) < IO < e

for £ ¢ Iq. Since J(a) » » as a » », we can find d < = such that

Te € Aq where 84 = {f: £([0,1]) < d}. The set 44 is weakly compact and

from Lemma 3.3 the set 'y is weakly closed. Hence I, is weakly compact. a
The following minimax theorem i{s the driving force behind the upper

bound of the LD results of the next section.
Theorem 3.5. Let F be a weakly closed subset of M[0,1]. Then

(3.26) sup I_(F) = I(F),
P P

where for any set A

I (A) = inf I_(f) and I(A) = inf I(f).
P feA P feA

Proof. From (3.23) we immediately have

sup I _(F) < I(F).
p P 7

Suppose that (3.26) were not true; then there exists an n < = such that

(3.27) sup IP(F) < n< I(F).
P

17
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Thus, for each partition P e {0=tg<t{<...<ty=1}, we can find fp in M0,1]
such that Ip(fp) < n. The support of such an fp will be contained in the
support of a. Let fp, célled the P-linear form of tP with respect to a, be

defined by

2 ) - ; rp(ti)—fp(t
P {=2 a(ti)-a(t

fP(t1)

* a(t1)

)
i=-1
) a(ANCE, _ ¢, 1)

i1

a(Aﬂ[O,t1]) ’

and

Ip(fp) - IP(fP) = I(fp).

N
Hence [f is a net in the set Pn which is compact from Lemma 3.3.

}
p
Thus, there is a cluster point fg of this net and I(f3) < n from the lower
semicontinuity of I. If we can show that fy is a cluster point of {fp},
it will follow that fjy belongs to F since F is closed. Since I(fg) < n,
this will lead to a contradiction of (3.27), and the conclusion (3.26)
would have been established.

Let P' = {0-t'1,t'2....,t'e} be a partition consisting of continuity
points of fg. Fix e > 0, and let NP'e be a weak neighborhood of fy

*

defined by

- . r Y- ' ]
Npv ¢ {£: m?x ]r(: Jmfer ) Leef.
Since £y i3 a cluster point of {fp}, there is a partition P" > P' such that

A A
rp € Np'.e if P >P'. Since fp and fp agree on the partition P, it

18
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for P > P' and that fg is a cluster point

of {fp}. This completes the proof of Theorem 3.4. )

Theorems 3.2, 3.5 and Lemmas 3.3, 3.4 dealt with the rate function
I(f) which involved the function J. It was assumed that J was the rate
function of a non-negative random variable X satisfying (3.1). When these
results are applied in the Section 4 and 5 we will restrict X to be
non-negative and infinitely divisible. For this special case the following
facts are noted concerning the finiteness of J(0) and Cy. From (3.8), J(0)
is finive if and only if P(X=0) > 0. Thus J(0) = = for the Gamma
distribution and J(0) = u for the Poisson distribution with parameter u.
On the other hand, Cy = = for the Poisson distribution and Cq = 1 for the
Gamma distribution with shape parameter 1. 4

The results of the rest of this paper would be strengthened if we
could have proved Lemmas 3.3, 3.4 and Theorem 3.5 in the Skorohod topology
wherein the distribution functions f are considered as elements of D[0,1].
Unfortunately certain complications occur as indicated by the following
remark.

The Skorohod topology is stronger than the weak topology. Thus the
rate function I(f) is Skorohod lsc, and hence T, is Skorohod closed.

However T, is not Skorohod compact as the following example demonstrates.

Let
1 1
t 0¢t <35
1 1 1 1 1
fn(t) - t + n(t 3¢t H) 3% <Ctis
t o+ 1 <
- t <,
> < 1

19
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Let J(a) = a - 1 - log a, which is the rate function corresponding to the
Gamma distribution with shape parameter 1. Let a be the Lebesgue measure,

Then
I(f) =1-21og (1+4n)
n X n

and £y € Ty. - Note that £ » £ in the weak topology, where

t t < 1/2

1
5 <t

f(t) =
t+1

Since f, is continuous and f has a jump at ¢ = %, no subsequence of fnh can

DO hemt

converge in the Skorohod topology.
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R 4, LD Rates for Stochastic Processes with Stationary

and Non-negative Independent Increments.

Let {X(t),05;§1} be a stochastic process with stationary and
non-negative independent increments and measurable sample paths with
X{0) = 0. Since the increments are non-negative, the sample paths of
{X(t),0§t§1} can be considered as members of M[0,1]. Note that X(1) is a
non-negative infinitely divisible random variable. |

We will assume that

(5.1) o(8) = £y ¢ &

for some 8 > 0. Let y(8) = log ¢(8) and let J be the rate function of X(1)
as defined in (3.2). Let o be a probability measure on [0,1]. Let the

rate function I(f) on M[0,1] be as defined in (3.15). For A > 0, define
(4.2) Z,(£) = 1 XOa([0,£1)) 0 ¢ t < 1. |

Then {Zx(t),0§t§1} is a process with values in M[0,1]. Endow
M[0,1] with the weak topology and denote the induced distribution of
{Zx(t),0§t£1} by P,. In this section we show that

{PA} is LD tight (Lemma 4.3) and satisfies the LDP with rate

function I(f). (Theorems 4.1 and 4.2).

Theorem 4.1, Let F be a weakly closed subset of M{0,1]. Then
et
o (4.3) Tim 1 log P, (F) < - L(F).
23 ) R
[
E:Z Proof. Let P = {0=tg<t{<.,.<ty=1} be a partition and let
[
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EO.t1] if1=1

(4.4) A1 =

(t1-1,t1] it il=2, ..., k.
Let
(4.5) wk’1 = ZA(Ai)- ? i<k,

Then {wA 1,1§i§k} are independent, and from Theorem 3.1 and Lemma
L
2.8 satisfy the LDP with rate function

X

i
(4.6) ? J (;TKIT) a(Ai).
Now,
P,(F) = P(Z,eF) < P{Ip(Z)) 2 Ip(F)}
where

wk i
IP(ZA) = T J(;TK-)) a(Ai).
i i
Since the support of x(1) is [0,#) the function J(x) is continuous in [0,=)

and J(x) » » as x » », Thus the set

X
. i
{(Xy0eensx, ) : J(—-——a(Ai))u(Ai) > Ip(F)}

is closed in RK. Using the LDP of {W 1<i<k} and its rate

A,1°
function in (4.6), we obtain

—1
Tim } log P, (F) < - I(F).

22




Since P is arbitrary, we can use the minimax result in Theorem 3.5 to

obtain

Iim % log P,(F) < - I(F). o

Theorem 4.2. Let G be a weakly open subset of M[0,1]. Then

(4.7) lim § log P (G) > - 1(G),

Proof. There is nothing to prove if I(G) = », Otherwise, fix ¢ > 0 and
choose f ¢ G so that I(f) < I(G) + €. There is a § > 0 and a partition
P = {0=tg<tq<...<tg=1]} consisting of continuity points of f and a such that

the neighborhood

Np o = {g: max | g(a;) - £(Ay) | < &}
' i

of f is contained in G. Here Aq,...,Ax are as defined in (4.4). Thus,
P, (G) > Px{m?x |W, ;= £ | < s}

where {W, .,1<i<k} are as defined in (4.5) and satisfy the LDP with

A,i’
the rate function in (4.6). Furthermore the set

G* « {X1,...,%¢): max | x;~f(A;) | <6} is open in RK. Thus

i
1 X
iif 3 1og PA(G) > - inf ? J(ETKIT)Q(AI)

where infimum is taken over the set G*., Hence,




lim { 1og P,(G) 2 = I (£) 3 - I(£) 2 - I(G) - e.

This completes the proof of Theorem 4.2. n]
Lemma 4.3. The family of probability measures {PA} is LD tight.

Proof. This follows from Lemma 2.6. A more direct proof is as follows.

The sets
Ky = {£: £¢00,1]) < L}

are compact. Let & > 0 be such that ¢(8) < =, From the Markov inequality,

we have
P, (KL®) < exp{-[oL-v(0)]}

which can be made as small as we please by choosing L sufficiently large.

This completes the proof. a
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5. LD Rates for Stochastic Processes with Stationary lndependent

f‘! Increments with no Gaussian Component.

Let {X(t),0§t§1} be stochastic processes with stationary independent
increments and measurable sample paths with X(0) = 0, Let the infinitely
divisible random variable X(1) have a finite moment generating function
$(8) which is finite for | e | < n for some n > 0. Assume that X(1) possess
no Gaussian component.

From standard results on infinitely divisible distributions

{eg. Breiman, 1968, Chapter 14) it follows that
0x
¥(8) = log ¢(8) = f(e "=1)dv(x)
where the Levy measure v (possibly unbounded) satisfies f[x[dv(x) < @ and

that the sample paths of {X(t),0<t>1} lie in BV[0,1], the space of

functions of bounded variation on [0,1]. Thus, we can write

- x(t) = x{(e) - x(2)(e)

-

o

a where X(1)(t) and X(2)(t) are two independent stochastic processes with
Py -

- stationary and non-negative independent increments with Levy measures for
ﬁfi x(1)(1) and x(2)(t) are given by v(1)(A) = v(AN[O,=)) and v(2)(A) = V(-AN
»':‘-

_;} (-=,0)), respectively.

- @

s

:fi Let J, J(1) and J(2) denote the rate functions associated with X,
= i)

E. x(1) and x(2). That is, J(a) = sup {ea-y(8)} and J(i’(a) =

2

A

e

o, 25
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e sup {8a-y(1)(8)} where y(1)(8) = f(e®*~1)dv(1)(x) is the cumulant

D)

Fu generating function of X(1), i = 1,2, ‘
:% Let a be a probability measure on [0,1]. Define

(5.1) Z,(t) = 271X(a([0,t])) for 0 < ¢ < 1.

Let Zx(1) and zx<2) be defined in terms of X(1)(-) and

x(2)(+) in a fashion similar to (5.1). Then,
=z (1) -z (2)
(5.2) zZ,(t) =2, 00(t) = 2 %</(t).
Note that {Z,(t): 0<t<1} takes values in BV[0,1] - the space of

functions of bounded variation, or equivalently, signed measures on [0,1].

Let £ ¢ BV[0,1]. Let its Hahn-Jordan decomposition be given by

£ = h(1) = p(2)

N where h(1), n(2) ¢ M[0,1]. Also suppose that

Q;

Nt

KN

= £ (1) = p(2)

o

.

F.-

S

o where £(1), £(2) ¢ M[0,1], and for any function p in BV[0,1] let
'... . dP
- p = p; * pp where py << a and pp | a and let pq -.E_l. It is clear that
- a
=

o

- £y = np{1) = ng(2) w g (D) = g (2),

b,

s

o

;‘. L4 .

ke (5.3) £ = £1(1) - £4(2)
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and

(5.4) inf {£2(1)00,11: £ = £(i) - £(2); £(1), £(2) ¢ M[0,1]}
= ho{1)([0,1]), 1 =1, 2.

The definitions of fq, ha(!), ny(2) abvove will be used in the
statement of the theorem, below, which contains the main LD result of this

paper.

Theorem 5.1. Let PA be the probability distribution of
{z,(£),0¢t<1}. Then P, satisfies the LD principle with the

rate function
(5.5) I(£) = [ J(£y) da + Cihp(1)([0,1]) + cyhp()([0,1])

where f1, hp(1), ny(2) are as defined before and where C; and Cp are given

by (3.6).

Proof. Let PA(i) be the distribution of Zk(i)(') in
M{0,1], 1 =1, 2. Let g be a function from M(0,1] x M(0,1] into BV[0,1]

defined by g(£{1),r(2)) o £(1) - £(2),

D gp, @71,

Then g is a continuous function and PX = (PA
From Theorems 4.1, 4.2 and Lemma 4.3, pA(i) {s LD tight and

satisfies the LDP with rate function

10(e) = £ 3D (£y)da + c{Dep([0,1])

27
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e
L . df 1
- where f = f1 + fp with fy << a and f3 | o and £ e and where C(1) is
e o
‘* given by (3.10). From Corollary 2.9 PA(1) X PA(Z)
) satisfies the LDP with rate function I{1)(£(1)) + 1(2)(£(2)) for £(1), £(2)
- e M{0,1]. From the contraction principle, PA satisfies the LDP
with rate function
-
o tnf {310y + £3(2)(£,(2)yaa + c(Me(1)([0,1])
g- £(1),p(2); pap(1)-p(2) + c(2)f2(2)([o'1])}
K-
Y

= [ J(f1)da + Cnat1([0,11) + Cohp(2)([0,11)

--
L]
L]

I [ ) -
']
CEARAEN @V

in view of (5.3), (3.11) ard (5.4). o
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6. Applications to the Poissbn, Gamma and Dirichlet Processes.

In this section we evaluate the rate functions for three processes.

Example 1 - Poisson Processes.

Let {X(t),ogtgl} be a Poisson process with constant intensity u.
Define the process {Z,(t),0<t<1} as in (4.2). Then
{AZA(t).OSpgl} 1s a Polsson process with intensity function

Aua{[0,t]). The distribution of X(1) is Poisson with parameter u and thus

J(a) = a log f ~a+ypand Cy = =,

where J(a) and C; are as defined in (3.2) and (3.6). Thus, as an
application of Theorems 4.1 and 4.2, {Zk(t),05;51} satisfies the

LDP with rate function

4
s 1
(6.1) I(f) = f f11°5<—u>da + = £([0,1]) if £ K a

® otherwise

This result can also be derived from Varadhan (1966) since Cy = =.

Example 2 - Gamma Processes. Let {X(t),0<t<1] be a Gamma process, that is
a stochastic process with stationary independent increments and measurable

paths with X(0) = 0 and such that X(1) has a Gamma distribution with shape
parameter 1., Then

J(a) =a=-1-1loga, J(0) = =>and Cy = 1,

where J(a) and C; are as defined in (3.2) and (3.6). Then the process

{Zx(t),0_<_t51} as defined in (4.2) satisfies the LDP with

29
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h £([0,11) = 1 - [ log f1da  if f; ® a
I(e) =

o « otherwise. 9

Example 3 - Dirichlet Processes. Consider the process

{wk(t).ogtg} where W, (t) = Z,(£)/Z,(1)

where Z, is as defined in Example 2. Then {Hx(t),05t51} is

the Dirichlet process with parameter ia(-) as defined in Ferguson (1973).

Sethuraman and Tiwar{ (1982) have shown that as A + Q, Hx converges

in distribution to Wy where Wg is the random probability measure Sy(:)

where §,(°) stands for the degenerate measure at a and Y is a random

variable with distribution a. However, if we let A + e, then wx

converges to the constant a in M(0,1]. The contraction principle and the

LDP for the Gamma process show that the Dirichlet process with parameter ia 1

satisfies the LDP, as » + o, with the rate function

K(a,f) if £(1) =1 and £ = g

I(f) =

"'T.‘v'r'.
RN I
9

. I’ 19 4,
4
-

otherwise,

(A »
s
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where K(a,f) is the Kullback-Leibler information number between two

b

probability measures a and f defined by

STy .
: et
A

.

=7 T
A

K(a,f) = - [ log %§ da.
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variacion.

The LDP for such processes is obtained under the weak*-topology.
This covers a case which was ruled out in the earlier work of Varadhan (1966).
As applications, the large deviation principle for the Poisson, Gamma and
Dirichlet processes are obtained.
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